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Abstract

Formulation of a stress—strain relationship is presented for a granular medium, which is modeled as a first-order
strain-gradient continuum. The elastic constants used in the stress—strain relationship are derived as an explicit function
of inter-particle stiffness, particle size, and packing density. It can be demonstrated that couple-stress continuum is a
subclass of strain-gradient continua. The derived stress—strain relationship is simplified to obtain the expressions of
elastic constants for a couple-stress continuum. The derived stress—strain relationship is compared with that of existing
theories on strain- gradient models. The effects of inter-particle stiffness and particle size on material constants are
discussed.
© 2003 Published by Elsevier Ltd.
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1. Introduction

A high-gradient model utilizes higher-order derivatives of displacement as additional strain measures in
a constitutive equation. Therefore, the model is useful in simulating materials with high intensity of non-
uniform strains. For this reason, high-gradient models have been recently received attention in the analysis
of several phenomena where strains are highly non-uniform such as: localized deformation including shear
band or fracture (Coleman and Hodgdon, 1985; Triantafyllidis and Aifantis, 1986; Bazant and Pijaudier-
Cabot, 1987; Bardenhagen and Trianfyllidis, 1994; Zervos et al., 2001) propagation of high-frequency
waves in a media (Chang and Gao, 1997; Sluys, 1992; Suiker et al., 1999) and mesh dependency in finite
element analysis for materials in a near-failure condition (De Borst and Muhlhaus, 1992; Pamin, 1944;
Peerlings et al., 1996).

Two types of high-gradient models can be found in the literature, namely, (1) models employing only
higher-order strain, and (2) models employing both higher-order stress and higher-order strain. For models
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employing only higher-order strain, Cauchy stress is a function of strain as well as higher-order strain.
However, higher-order stress is not considered. The concept of this model can be traced to non-local
theories in which the magnitude of stress can be influenced by the strains at the vicinity of a material point.
This type of model is popularly used because the equilibrium equation for this type of model is identical to
that used for the classic model, therefore the conventional solution methods can be directly utilized without
much alternation. For this type of model, several expressions for elastic stress—strain relationships have
been proposed, e.g., Beran and McCoy (1970), Bazant and Pijaudier-Cabot (1987), Altan and Aifantis
(1997), Chang and Gao (1997), Muhlhaus and Oka (1996). This approach, however, has an unfavorable
aspect. Because the higher-order stresses are neglected, models employing only higher-order strains become
ambiguous in the definition of work done due to higher-order strain. Therefore, a numerical implemen-
tation of this type of model may encounter problems associated with non-positive definiteness.

On the other hand, for models employing both higher-order stress and higher-order strain, the higher-
order stress is the energy counter part of the strain-gradients. Thus a positive potential energy is ensured.
This type of model can be found in the earlier work by Mindlin (1965), Toupin (1962), etc. The equilibrium
equation for the system involves not only Cauchy stress but also the high-order stresses. As a result, it
greatly increases the complexity in solution methods. For example, the shape functions used in a finite
element method are required to satisfy the continuities of not only displacement but also displacement
gradients. Moreover, it will also increase the number of material constants. For example, in addition to the
usual two Lame constants, Mindlin and Eshel’s model (1968) consists of five other material constants for
isotropic materials. Unfortunately, these constants are difficult to be determined, through either experi-
mental means or otherwise. This difficulty is the primary factor that prohibits investigators from adopting
the use of higher-order stresses.

In this paper, we attempt to derive expressions of material constants for granular material, which is
modeled as a strain-gradient continuum employing both higher-order stress and higher-order strain. Here,
we will focus only on elastic constants. It is worthwhile to examine the expressions of material constants for
the simple linear elastic conditions because non-uniform strains are often observed in granular material
even in the elastic range, and an elastic stress—strain relationship is the basic element for a comprehensive
elastic—plastic-damage model.

For this purpose, we will extend the granular mechanics approach (i.e. Chang and Liao, 1990; Chang
and Gao, 1995) to include the effects of higher-order stress. In Section 2, we will derive the stress—strain
relationship. The essential ingredients of the model such as continuous displacement field, inter-particle
stiffness, and fabric tensor are discussed sequentially. In Section 3, closed-form expressions for the elastic
constants are derived for randomly packed granulates. The derived stress—strain expressions are then
compared to those of existing theories. In Section 4, the derived stress—strain relationships are simplified to
a form that resembles a couple-stress model. The effects of particle size, inter-particle stiffness, and size of
representative volume on elastic constants are discussed. Summary and conclusions are given in Section 5.

2. Stress—strain law for the first-order strain-gradient continua

In nature, all materials are not continuous if the viewing scale is sufficiently small. However, for practical
purposes, it is convenient to model the mechanical behavior of a material by treating it as a continuum. In
the mechanics of classic continuum, the stress—strain relationship is defined for a “volume element” which
is conceptually infinitesimal in size. However, the size of a volume element should be relatively larger than
the size of material microstructure so that the volume element can be treated as a continuum. For a
randomly packed granular material, the volume element should contain sufficient number of particles in
order to be representative of the material and to resemble a continuum. Therefore, the size of a repre-
sentative volume element envisioned for a granular material is much larger than that for a metallic material.
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Treating the representative volume of granular material as a continuum, stress can be linked to inter-
particle forces and strain can be linked to particle movements. Works along this line can be found by
Rothenburg and Selvadurai (1981), Wallton (1987), Jenkins (1988), Chang (1988), Chang and Gao (1996),
Kruyt and Rothenburg (2001, 2002), Luding et al. (2001), Kruyt (2003), etc. In order to model high in-
tensities of non-uniform deformation of granular material, it is desirable to include strain gradients as an
additional strain measure, and model the material as a strain-gradient continuum. The material constants
derived for models employing only higher-order strain can be found in the work by Chang and Gao (1995),
Chang (1998), Muhlhaus and Oka (1996), Suiker et al. (2001), etc. However, very little work has been
focused on material constants for models that employ both higher-order stress and higher-order strain.

2.1. Continuum field for a discrete particle system

Granular material is envisioned as a collection of particles. Under deformation, particles in the material
undergo translation and rotation. In order to make a link between the discrete particle system and its
equivalent continuum system, we construct a continuum displacement field #;(x) in such a way that the
displacement at the centroid of the nth particle, !, coincides with the displacement field, i.e,

u(x") = i (1)

where x” is the location of the nth particle.

In classic continuum mechanics, a linear displacement field is employed to describe the deformation of a
representative volume element. For granular material, the size of a representative volume element is rel-
atively large. Thus we approximate the displacement field by a polynomial expansion containing second
derivatives, 1.e.,

u,«(x) = U; =+ u,»‘jxj + %u,-‘jkxjxk (2)

where u;, u;;, and u; 4 are constants for the representative volume.

The second-rank tensor u;; has nine components. The third-rank tensor u;; has 27 components.
However, by definition the last two indices of u; ; (i.e., j and k) are reciprocal. Thus the 27 components can
be reduced to only 18 independent components.

For simplicity, we assume the rotation of particles is equal to the rigid-body rotation of the represen-
tative volume and there is no moment transmitting through the contact between particles. The material can
be regarded as the Class II non-polar type of continuum (Chang and Gao, 1995).

2.2. Inter-particle contact law

We now consider the elastic behavior of two particles in contact. A general expression for the constitu-
tive relations between the inter-particle force f; and the relative displacement of two particles o, (i.e., inter-
particle compression) can be given by

Iq = Kgos 3)

where K7, is the inter-particle contact stiffness tensor. For two particles in contact, a local coordinate system
can be constructed for each contact with three orthogonal base unit vectors: n; is normal to the contact
plane; s; and ¢, are tangential to the contact plane as shown in Fig. 1.

Let k, be the compressive contact stiffness in normal direction and k; be the shear contact stiffness.
Assuming the shear contact stiffness is same in s and t directions and that there is no coupling effect between
normal and shear directions, the contact stiffness tensor Ki;, can then be expressed in terms of the unit
vectors n, s and t, as
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Fig. 1. Local coordinate at inter-particle contact.

Ko = kg -+ s (s + €665 “4)

For each particle contact, the corresponding auxiliary local coordinate system is related to the global
coordinate system according to (see Fig. 1)

A = (cosy,sin y cos f§, sin y sin f3)
5§ = (—siny,cosycos f§,cosysin ff) (5)
7= (0,—sin 8, cos f)

The vector § is on the plane consisting of ¥ and 7. The vector 7 is perpendicular to this plane and can be
obtained by the cross product of # x §. The rolling resistances between two particles are neglected in this

paper.
2.3. Fabric tensors

For convenience in the further derivation, we define fabric tensors /; and Jj; as follows:

c __ b a, c _ b b a_a

I;=x; —x{; J“—xixj_xixj (6)
The first order fabric tensor (or branch vector), /¢, represents the vector from the centroid of particle ‘a’

to that of particle ‘b’ as shown in Fig. 2. Let the position vector of the contact point be x{, thus

a __ ¢ ac., b _ ¢ bc
Xp =X —Fhs X5 =X (7)

By substituting Egs. (7) into (6), the second order fabric tensor, J;;, can be expressed as functions of the

location of contact, x¢, and the branch vector /¢ as follows (note that /¢ = 4 — y):
c c bc c bc c ac c ac cjc cjc bc_bc ac_ac
Ty = =i )(xj =1 ) - (= )(xj = ) =Xl +xh+ (’i T T ) (8)

The second order tensor is a symmetric tensor, which includes descriptions of branch vector, location of
the contact, and radii of the two associated particles. In the special case of a packing with equal-size
spheres, the second order tensor Jf; = x{[{ + x{I.

Between the two individual convex-shaped particles as shown in Fig. 2, the inter-particle compression J;
at the contact point ¢ can be obtained as follows:
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Particle b

Particle a

Fig. 2. Schematic plot of two particles in contact.

8 =67 = u(x") — u;(x*) +e1/k<w = wa”zc) )

where w and of are respectively the rotations of particle ‘5’ and partlcle ’. As previously described, the
particle rotatlon is assumed to be equal to the rigid-body rotation (i.e., w = o} = w;) of the representative
volume element, which can be expressed as the skew-symmetric part of stram

€ijk; = Uik = (ui,k — uk_,,»)/2 (10)
Thus Eq. (9) becomes
5 = 0" = w(x") — w(x) — ey, (11)

Using the polynomial expression in Eq. (2), we can describe the inter-particle compression using the
continuum field of displacement.

2.4. Constitutive equation

Let the representative volume ¥ be subjected to forces on its boundary surface S. Neglecting the body
force of particles, the work done per unit volume of the discrete system can be expressed as a summation of
the work done over all inter-particle contacts in the unit volume. Then, by substituting the inter-particle
compression ¢; with Eq. (12), it yields

1 N 1 L (.
:;Zﬁiél :;Z<(ulk e,,ka)j)fl + uljkf ) (13)
V V
It can be easily observed that the term u;;, — e;w; is equal to the symmetric strain u; ) = (uix + ;) /2.
The work done per unit volume in Eq. (13) can be rearranged into
W = Gigtt(q.) + Tijgtiq.ij (14)

where the stresses are defined in terms of fabric tensors as follows
1 C JC 1 C JC
,V;fqli; O’[jq:ﬁ;fq'jij (15)

Eq. (14) shows that the work done on the system is contributed from two terms: the symmetric strain
ug, and the first-gradient of strain u,;. The expression of Eq. (14) is similar to the form of first-order
strain-gradient theories proposed by Fleck and Huchinson (1993), Mindlin and Eshel (1968), Mindlin and
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Tiersten (1962), Toupin (1962), etc. Using the inter-particle contact law (Eq. (3)), and the continuum
polynomial expression of ¢; (Eq. (12)), Eq. (15) can be further expressed as

Giq = Cigtitt(x,1y + BigkimUk,im (16)

ijg = Bugkijt(k,ty + Dijgim Ui, im

where the constitutive coefficient tensors are expressed in terms of fabric tensors and inter-particle stiffness:

¢ jc e 1 - c yc prc 1 ¢ Jje Ke
lqk] - Zl l qu’ Bf‘]kl’" = 2V Z l Jlquk7 Dijqklm = W ZJI/Jlm qk (17)

To determine the constitutive tensors By, and D;jqum, We first obtain the expressions for /¢J;, and i i
with the aid of Eq. (8)

T = X1+ X5 1605 + IS (PFrhe — reree) (18)
i = XX 1, + xix, 51+ xix L 4 x5x), 1T + (x 15+ x5 l“)( be j’” - r;”r;”)

I’ﬂ m m m

4 (.X'? l;z 4 xfy, 13) (rlb(r rzllc 79 ) 4 (ribcrbc raz rac) (rlbc rbc r([n rac) ( 19)

Then, we substitute the expressions of fabric tensors /{Jj, and JJ; into Eq. (17), which yields
1 N

Biqklm = ﬁ Z lzc l(;n ;k 4V Z 7ltclan;k + 4y melz‘l(K 4V Z lC hC /bn( 04 ZC)KC (20)
c=1

For a representative volume of granular material, the medium can be treated as statistically homo-
geneous and can thus be regarded as possessing central symmetry. Because of centro-symmetry, the first
two terms in Eq. (20) involving x§ (or x¢,) are zero. Note that the last term is equal to zero for a packing with
equal-size spheres. Nevertheless, this term is expected to be negligible since we assume the representative
volume contains a sufficiently large number of particles, and the particle size is relatively small compared to
the size of representative volume. Thus, By, ~ 0.

Using the same arguments, the constitutive tensor Dy, becomes

1 N N
Dijuin = 757 ZJflme Ky =77 (ijx;ZfF + foxfnljl” + ) XXLL 4+ xix 1;1;,) K¢ (21)
c=1 c=1 c=1

Since Bigum = 0, the overall constitutive equations of Eq. (14) can be simplified into two fully decoupled
equations:
Oiqg = CigkiU(k,1) (22)
Oijg = D[jqklmuk.lm
The constitutive equations consist of one fourth-rank tensor C,, and one sixth-rank tensor, Djgm.
According to Wyle’s theory (Suiker and Chang, 2000), most of the components of an isotropic tensor are
dependent. In a general case, out of the 81 components of the fourth-rank tensor Cjy,, there are only three
independent constants. The sixth-rank tensor, D;jqu,, contains 729 components, but only 15 independent
constants. Thus for the two set of constitutive equations, we have total 18 material constants, which is still
rather a formidable situation. To investigate the possibility for a further simplification, in what follows, we
will analyze the properties of the higher-rank constitutive tensors Djgm.
Since the representative volume is a packing of randomly arranged particles, it is reasonable to state that,
for any pair of two particles in contact, the location of contact ‘¢’ is not correlated to the branch orien-
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tation. According to the covariance theory of statistics (see derivation in Appendix A), the summation can
be written as a product of two separate summations as follows:

1 = W 1 18 2ad 1 X ¢ . 1 = ¢ jc pre
V lejxmli llek = <N lejxm> (V Zl li llek = ]jmcipkl (23)

where the second summation is identical to the fourth-rank tensor C, and I;, is the second-moment of
inertia of the representative volume, defined as

1 - C,.C
Il = N inxj (24)
c=1

Therefore, with the assumption that the packing is perfectly random and that the representative volume
is sufficiently larger than the particle, the sixth-rank constitutive tensor can be reduced to a summation of
the products of second-order moment of inertia and the fourth-rank constitutive tensor, given by

Dijpklm = %([jm Cipkl + Iim ijkl + Ij/ Cipkm + Iil ijkm) (25)

This fact simplifies greatly the complexity of the higher-order constitutive tensors. The values of Djym
can be determined directly from Cig,.

3. Elastic material constants for strain-gradient continuum
3.1. The relation to inter-particle stiffness

In this section, closed-form expressions for the constitutive tensors, C;; and D;jym, are derived in terms
of inter-particle properties. For a representative volume that contains a sufficiently large number of ran-
domly packed particles, the summation in Eq. (17) can be converted to an integral form. For an isotropic
random packing structure, the integral is given by

N
N

1K, :—/

; 4 4r )

In this integral, the direction of branch vector is n{, and the stiffness tensor is a function of x¢, s¢, £ as
shown in Eq. (4). The vectors nS, s¢, # (see Fig. 1) can be replaced with continuous functions of (f,y) as

given in Eq. (5). The integral was carried out and it yielded a closed-form expression for the fourth-rank
tensor Cyj, in the following form: (Chang and Gao, 1995)

Cijrt = 4001 + #(5ik5j/ + 51‘/5%) + 0‘(51'/5//{ - 5ik5jl) (27)

The three material constants, A, u, and o derived by Chang and Gao (1995) are in explicit terms of
contact stiffness, k, and k;, branch length /, and the number of inter-particle contacts per unit volume N/V
(i.e., packing density).

NI? NI? < 3 ) O(_le

U =k p=1gp\kt3hk )i o=1p

n/2

21
| K (5.0 sinvapay 26)

n/2

/

= . 2
157 k (28)

In Eq. (28), note that « = u — A. The three material constants can thus be reduced to two independent
constants; i.e., the usual Lame constants, 4 and p.

Since in the stress—strain relationship 6;; = Cjju), the strain u ;) is symmetric about subscripts k and
[, the fourth-rank constitutive tensor can be simplified to
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Cijrr = 400 + ﬂ(éikéjl + 5i15jk) (29)
Denoting the strain tensor ¢; = u ;, the stress—strain equation becomes the familiar form as follows:
gjj = ;Léijgkk + 2,“81'1' (30)

As derived in the previous section, the sixth rank tensors, D;jqum, are functions of the fourth-rank tensor
Ciji and the second-moment of inertia /;. For a cubic representative volume with side length 2L, the
second-moment of inertia in Eq. (24) can be written in a form of integral, given by

x :@/ / / )ijdxldXQdX3 (31)

After integration, it yields

1
I = §L25i/ (32)
By substituting the expression C;; of Eq. (27) into Eq. (25), we obtain
12,
Dik]‘]!’m = 4 3 (} Azjkqpm + 'qu]kqpm + aAt]kqpm) (33)
where
At};kqpm 5jn15ip5kl + 5lm5jp5kl + 5jléip5km + 5iléjp5km
Agkqpm 5jm§ik5pl + 5jm5i15pk + 5i1n5jk5pl + 51’»15]15171( + 5j15ik5pm + 5j15im5pk + 5i15jk5pm + 5iléjm5pk
Aqupm = _5jm5ik5pl + 5jm5ilépk - 5im5jk5pl + 5im6j15pk - 5j15ik5pm + 5j15im5pk - 5i15jk5pm + 5i16jm5pk

Eq. (33) leads to the final form of higher-order stress—stress relationship
L2
Tijp = ¢ (2(Oipttiy + Ojpttis) + 1 (2uap iy + iy + ) + (20155 — s — ) ) (34)

According to Suiker and Chang (2000), 15 independent constants are required to completely define an
isotropic six-rank tensor. However, by considering the two conditions for D, (a) the indices / and m are
reciprocal, and (b) the indices i and j are reciprocal, the 15 constants can be reduced to three constants: 4, u
and L (note that o is a function of 1 and p).

3.2. Comparison with other formulations

It is instructive to compare the present model with that derived by Mindlin and Eshel (1968). They
proposed a seven-constant general form of work done per unit volume,
W = (#817817 + %}Lgkkgjj) + ayuy ity i + Qo) e + A3y iy it Qally il iy + Qs iU i (35)

Taking derivative of W with respect to strain and to strain-gradient, the corresponding higher-order
stress—strain relationship can be derived, given by

O—pqr - alui,piéqr + aj ui,qiépr + %a2(up,ii6qr + 2u;}rz‘éqp + uq,iiépr) + 2a3unii5pq + 2a4ur.pq + as (up,rq + uq,rp)
(36)

The five material constants ¢; are difficult to be obtained from experiments. Very few formulations are
available with regard to the material constants, except for some limited conditions. For example the fol-
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lowing expression for one-dimensional stretch was used by Day and Weitsman (1966) and Oden et al.
(1970).

o = (A+2u) Pup g (37)

and the following relationship between couple stress and rotation gradient was used by Fleck and Huch-
inson (1993).

aifw = 1uy (38)

The value / is a material length parameter.

By comparing Eq. (36) with the derived stress—strain relationship in Eq. (34), the present model shows
that, for a granular media, the corresponding constants can be determined from Lame constants and
internal length as follows:

L’ L’ L’

Zi; ar = a3 = 0; a4:€(ll+°‘); asig(ﬂ—“) (39)

ap =

These constants can also be determined in terms of inter-particle stiffness (see Eq. (28)),

NP2 [? NI? [?
=a;s=— —(ky — k); =—— — (ky + 4k 40
a =as =15y k= k)i =155 7 (ha +4k) (40)
For the case of k; = 0, all three constants are equal, i.e., a; = a4 = as = % %kn

3.3. Two deformation modes: torsion and bending

In the present model, Eq. (34) represents 18 equations, which can be decomposed into two fully de-
coupled modes: a torsion mode and a bending mode. The torsion mode contains three equations while the
bending mode contains 15 equations. In terms of three constants 4, 4 and L, the three equations of torsion
mode and 15 equations of bending mode are given below in matrix forms.

(1) Torsion mode (3 equations)

0123 12 4p—22 A A U3 12
0132 = F A 4,LL -2 A U331 (41)
0231 A A 4/1 — 22 U3

(2) Bending mode (15 equations)
The 15 equations can be expressed into three sets of fully decoupled equations; each set contains five
equations. The first set of five equations is given by

0111 4(2,[1,—"-},) 24 24 0 0 Ui 11
0122 L2 24 4,u A 24 0 21/[2721
0133 = — 24 A 4[1 0 2 2%3,31 (42)
0221 12 0 24 0 4(2,[1 — /1) 0 Uy
0331 0 0 22 0 4(2/1 — /1) Uy 33

The second set of five equations can be obtained from Eq. (42) by replacing the indices of ¢, and u, »
in a rotating manner (1 -2, 2— 3, 3—1). Repeating the process, the third set of five equations can be
obtained.
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4. Elastic material constants for couple stress continuum

The stress—strain relationship derived in the previous section consists of all components of strain-gra-
dients. It will be seen in this section that, by neglecting some components of the strain gradients, the stress—
strain relationship can be simplified to a form that resembles the couple-stress model advocated by Toupin
(1962), Mindlin and Tiersten (1962), Fleck and Huchinson (1993), among others. Therefore a couple-stress
model can indeed be considered as a special case of the strain-gradient model. For application purposes, the
couple-stress model is more popular than the strain-gradient model because of its simplicity. However, it
shares the same problem of strain-gradient model that the constitutive constants are difficult to be deter-
mined in laboratory. Therefore, in the following, the constitutive constants are derived specifically for a
couple-stress model.

In a couple-stress model, the work done is generated only from the gradients of rigid-body rotation.
Since the rigid-body rotation is defined as the skew-symmetric part of strain, ¢, = Le;uy;, the rotation
gradient can be related to displacement gradient by

Tip = Dip = 3Ciktip (43)

The rotation gradient y,; contains nine components. The expanded equations for all components of
rotation gradients are shown in Appendix B. It is noted that the following relation is always true
Ji1 + %2 + 233 = 0. Therefore, the rotation gradients can only be considered as eight independent terms.
Among the nine components, three components belong to the torsion mode (y;;; i = j) and six components
belong to the bending mode (y;;; i # j).

The work done for a couple-stress continuum is expressed as

W = aupuga + miy; (44)

In this equation, the couple stress m;; is the energy counter-part of rotation gradient y,;, which can be
expressed as higher-order stress as follows (see Appendix C):

mij = €510k (45)

where 6, is defined as: 6, = g, + 04 (for i # j) and 6,3 = g, (for i = j).
4.1. Stress—strain relationship

By substituting Eq. (34) into Eq. (45), m;; can be derived as a function of displacement gradients u, ;.
Then each term of the displacement gradients u;;; can be separated into a skew-symmetric part y,, and a
symmetric part 7,, (see Appendix B). After neglecting the symmetric part y,,, we obtain the stress—strain
relationship between m;; and y;,;. The final stress—strain relationship can then be written as a tensor form

mij = Qijk1 Y ik (46)
where the stiffness tensor

L2
a,'jk[ = ? (3(2/1 — /1)5,‘[{(3]/ — /15,’/5/k> (47)

Eq. (46) is the stress—strain relationship for a couple-stress continuum, which has a form similar to that
used in micropolar (or Cosserat) continuum advocated by Cosserat and Cosserat (1909), Gunther (1958),
Koiter (1964), Mindlin (1969), Eringen (1968), Shaefer (1967), etc. Nevertheless, a couple-stress model is
conceptually different from a micropolar model. In a micropolar model, the stress ¢;; and the strain u; ; need
not be symmetric while in a couple-stress model the stress and strain are always symmetric. It is further
noted that the derived material constants in Eq. (47) are different from the material constants derived for
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granular material treated as a micropolar continuum by Chang and Ma (1992). In a micropolar continuum,
the material constants are related to the rolling stiffness between particles, which is neglected in the deri-
vation of the present model.

The stress—strain relationship of Eq. (46) can be decomposed into two fully-decoupled modes: the torsion
mode, and the bending mode. In order to discuss the material constants associated with each mode, the
stress—strain relationship for both modes are written in the following matrix form:

(1) Torsion mode

mi T 0 O Y11
myy = 0 T 0 y &) (48)
m33 0 0 T X33

The value of torsion stiffness 7 can be expressed in terms of 1 and u as

2
T— % (41— 32) (49)

In terms of inter-particle stiffness, the torsion stiffness is

NP 2
= 1577 31 (ka +9K) (50)

(2) Bending mode

mip K —2&11 0 0 0 0 Y21
myy —201 K 0 0 0 0 Y12
mi3 _ 0 0 K —2(11 0 0 X31 (51)
ms 0 0 —2a, K 0 0 113
ma3 0 0 0 0 K —2a, L3
M3 0 0 0 0 —2a; K 13
where 2a; = L3—2/l and
L2
In terms of inter-particle stiffness, the bending stiffness is
N1
= _]? 4
= 15 o b e 4k (53)

The physical meanings of couple-stress and rotation gradient are illustrated here. In a Cartesian coor-
dinate system (x;,x»,x3), the couple-stress m;; acts on face-x; in the direction of x;. The couple-stress is in
torsion when i = j, and in bending when i # j. An example of m, is shown in Fig. 3a (the axis x; is in the
direction inward to the 1-3 plane) and m»; in Fig. 3b (the axis x; is in the direction outward from the 2-3
plane).

Deformation of the corresponding rotation gradient y,, is also shown in Fig. 3a. It is noted that, ac-
cording to its definition in Eq. (B.1) (see Appendix B), a positive y,, indicates a negative curvature u;
along x;-direction. On the other hand, a positive rotation gradient y;, shown in Fig. 3b indicates a positive
curvature us» along x,-direction.
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(a) deformation y,, (b) deformation y;,

Fig. 3. Illustration of couple stress and rotation gradient: (a) deformation y,, under m;,, and (b) deformation y,, under m,.

4.2. Effect of inter-particle stiffness on material constants

For an example of pure bending, the applied couple stress is m;,. All the other components of the couple
stress m;; are zero. According to Eq. (51), only two rotation gradients (y;, and y,,) are affected by the
application of my,. The ratio of the two rotation gradients is

Z12 A

e 2 54

Y O — 32 Sl
In terms of inter-particle stiffness, the ratio of rotation gradient becomes

) kn - ks

Ma_ a2 (55)

1 Skn + 4k

Based on Eq. (28), it is noted that the ratio of rotation gradients y,,/y,, is equal to Poisson’s ratio. For
the usual material, the normal inter-particle stiffness is usually greater than the shear inter-particle stiffness
(i.e., ky > k). According to Eq. (55), the ratio y,,/y,, is positive. As previously shown in Fig. 3a and b, the
deformation pattern exhibits a negative longitudinal curvature us; and a positive transverse curvature u; ».
Thus under a bending of the volume element, the longitudinal curvature and the transverse curvature carry
opposite signs, representing a shape of saddle with an anticlastic surface as shown in Fig. 4.

Curvature of the anticlastic surface depends on the ratio of rotation gradients y;,/y,;. It can be seen that
under the special case of k; = k;, (i.e., Poisson’s ratio = 0), the transverse curvature equals to zero (y,, = 0).
Under the special case of &, = 0 (i.e., Poisson’s ratio = 1/3), the transverse curvature is 1/3 of the longi-
tudinal curvature (), = y»,/3). The ratio of rotation gradients versus the ratio of k,/k, is plotted in Fig. 5.

The ratio of torsion stiffness or bending stiffness to shear modulus has a dimension of length square. It is
convenient to define constants ¢t and cp such that the torsion and bending stiffness associated with the
higher-order strain can be linked to the shear modulus by

T =crul? K= cpul? (56)
where the constant ¢t and cp are functions of inter-particle stiffness, given by
4 [ ky + 9k
T3 (2kn n 3ks> (57)
kn + 4k

BT 2kt 3k,
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Fig. 4. Anticlastic surface.
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Fig. 5. Ratio of curvature of the anticlastic surface.

Egs. (57) and (58) are plotted on Figs. 6 and 7. It can be observed that in the range of &, from 0 to k,, the
constant c¢g ranges from 0.5 to 1, and the constant ¢t ranges from 0.66 to 2.66. Under a special case of
ks = k, (i.e., Poisson’s ratio = 0), the magnitude of torsion stiffness is 2.66 times of bending stiffness. Under
a special case of ks = 0 (i.e., Poisson’s ratio = 1/3), the torsion stiffness and the bending stiffness are about
the same in magnitude.

5. Summary and conclusion

We have derived the stress—strain relationship for a representative element of granular material by taking
into account the inter-particle stiffness and fabric tensor of the packing. By using a polynomial displace-
ment field containing second displacement gradients, the derived model resembles the first-order “strain-
gradient continua” within Mindlin-Toupin’s framework.
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Fig. 6. Bending stiffness as functions of inter-particle stiffness.
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Fig. 7. Torsion stiffness as functions of inter-particle stiffness.

One of the difficulties in using ‘“‘strain-gradient model” is that the material constants cannot be deter-
mined from the commonly used laboratory tests. For this purpose, we have derived closed-form expressions
of elastic constants for random packing. It is noted that the total number of material constants for the
fourth rank tensor C;;; and the sixth rank tensor Dy, 15 810. The derived results show that, for an iso-
tropic random packing of granulates, the constitutive tensor Cjj; and Djjums can be determined from five
independent constants: inter-particle stiffness k,, ks, particle size /, packing density N/V, and the size of the
representative volume L.

Another useful result from this derivation is that the material constants associated with higher-order
stress—strain relationship D, are directly related to the lower-order material constants 4, u, and internal
length L. Thus the higher-order constants can be estimated using the measured values of the usual material
constants 4 and p. These results can also be used to determine the five parameters proposed by Mindlin and
Eshel (1968).

With some restrictions, the “strain-gradient continuum’ can be simplified to a subclass of “couple- stress
solid” and the 18 higher-order stress—strain equations are reduced to nine. These nine equations can be fully
decoupled into two modes: three equations in torsion and six equations in bending. The derived closed-
form expressions of elastic constants for the couple-stress solid show that the bending stiffness and torsion
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stiffness are influenced by the magnitude of inter-particle stiffness k5 and &,. When the value of k; increases
from 0 to &,, the bending stiffness increases about two times and torsion stiffness increases about four times.

Appendix A. Separate a summation based on covariance theory

The covariance of two random variables, X and Y, can be defined as follows: (Benjamin and Cornell,
1970)

Cov[X, Y] = E[XY] — E[X]E[Y] (A1)
where E[X], E[Y], and E[XY] represents the expectations of X, ¥ and XY respectively. When X and Y are not
correlated, the covariance becomes zero and the expectation of the product XY is equal to the product of
the expectation of X and the expectation of Y.

Now, we let X be the set of variables of x(x;, and let Y be the set of variables of /;/{K};. By definition, the
expectations of X, ¥, and XY are given by

|
1 N
=5 Z; LK, (A3)
1 N
= Z;xjxjnlfl‘l[(;k (A4)

Since the locations (x}x;,) of inter-particle contact are assumed not to correlate with the branch length
and contact properties (/{/{Ky,), the expectation of the product of XY is equal to the product of expectation
according to Eq. (A.1), thus

1 LS jepege
v Zx X IIKS = ( Zx/ ) (N ;z;llek> (A.5)

Appendix B. Definition of gradients for rigid-body rotation and shear strain

For the purpose of modeling couple stress continua, we decompose the strain gradients into symmetric
and skew-symmetric parts. According to the definition given in Eq. (43), the nine components for the
gradient of skew-symmetric strain (i.e., rotation gradient) y,, are expressed below.

X1 = (u3 21 — Uy, 31) X = (Ml 32 — U3, 12) X33 = %(uz,n - M1,23)
X2 = —(u3 n—hn); 3= l(ua 23 — Uy, 33)' X3 = %(M1,33 — u313) (B.1)
K21 = (141 31 — Uz, 11) 31 = 5(”2 11— U 21) X3 = %(MZ,IZ - ul,zz)

Corresponding to the rotation gradients, nine corresponding terms for the gradients of symmetric shear
strain are given below.
T = l(u3 a0+ 3); A = %(ul ntusn); Xn= %(Mz 13+ 1 23)
T2 = (M3 »nF+n); fiz= %(m n»FU); A = %(Ml 33+ U313) (B.2)
1 1
2 2

Tor =5(a Fusn); Xn =50 Fwa); I = 5(uan +uin)



5580 C.S. Chang et al. | International Journal of Solids and Structures 40 (2003) 5565-5582

Among the 18 terms, 12 of them belong to bending mode (i.e., y,; and y;; when i # j) and six of them
belong to torsion mode (i.e., y; and x,; when i = ).

For the bending mode, the 12 variables y5, ¥»1> X13> %315 %235 £32> A0 %12, X215 Xi3» X31> X23» A30 have one-to-
one correspondence to the 12 terms of displacement gradients (u3 22, U232, U323, U233, U133, U313, U131, U311,
Up 11, U215 Uz 12, U1 22), given by

W = X3+ 23 Usn = o — A W22 = Y2 T X2
Uipl = Y31 — %31 U131 = Yor T X210 U232 = Y12 — X12
Upio = Yz + Mz U313 = Xo3 — X3 U323 = X1z T L3

Ui = Y3 — X3 W13 = Y3+ A3 U233 = Y13 — i3

(B.3)

For the torsion mode, the six terms y,;, X2, X33» Z11» X22» X33 are related to only three terms of dis-
placement gradients uy 13, u; 23, u312. Therefore, u; ; is not uniquely related to the terms of y;; and ;. For
example, the displacement gradient u; 1, = y;; + %;; and it can also be expressed as w312 = )y — )2 For
convenience, we adopt the following relationships:

Usia = Y1 — X2+ X33
Uty = Yoo — X33 T In (B.4)
U3l = Y33 — X T X2

Appendix C. The relationship between couple stress and higher-order stress

The expression of work done by strain gradient is
W= OjjicUk,ij (Cl)

This represents a summation of 27 terms. Since the subscripts i and j are reciprocal (i.e., u;; = u; ), the
27 terms can be reduced to 18 independent terms, given by

W = oipu; (C2)
where 6, represents 18 terms and is defined as 6, = 0,4 + o (for i # j) and 6, = o, (for i = j). The 18
terms of work done can be separate into three modes, namely,

(1) dilation mode (3 terms),

Gt + Oalz 2 + 0333U3 33 (C3)
(2) torsion mode (3 terms),

0123U301 + O132U231 + 023111 32 (C4)
(3) bending mode (12 terms),

Oiiala 11 + O113U311 + G211 01 + G122l p1 + 1314131 + G133U331 + G01U1 22 + G203U3 20 + G230Us 32

+ 0233332 + 033111 33 + 03321233 (C.5)

By substituting Egs. (B.3) and (B.4) into Eq. (C.2) and neglecting the work done by dilation mode, the
work done can be expressed in terms of y;, and y,,, given by

W = mp,‘Xl-p -+ m[?i)zip (C6)

In a couple-stress model (see Toupin, 1962; Mindlin and Tiersten, 1962; Fleck and Huchinson, 1993,
among others), the work done by y,, is further neglected, thus
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W =my,
= (6223 — 0232) 12 — (G113 — G131) 221 — (G332 — G233) 213 + (G112 — Gio1) 131 + (G331 — G133) 123
— (6221 = G122) 132 + (G123 — G132) iy + (G231 — 6123) 222 + (132 — 6231) 233 (C.7)
The corresponding couple stress m;; can be expressed in an abbreviated notation, given by
my = e Gy (C.8)
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